Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Alspaugh, J Andrew (Ed.)ABSTRACT Systemic infections byCandidaspp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, fromCandida albicansis a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed anin vitronucleotidase-coupled malachite-green-based high throughput assay for purifiedC. albicansCho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising averageZ’ score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects againstC. albicanscells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disruptingin vivoCho1 function by inducing phenotypes consistent with thecho1∆∆mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with aKiof 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCEFungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with aKivalue of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.more » « less
-
MaxMSP is a visual programming language for creating interactive audiovisual media that has found great success as a flexible and accessible option for computer music. However, the visual interface requires manual object placement and connection, which can be inefficient. Automated patch editing is possible either by visual programming with the [thispatcher] object or text-based programming with the [js] object. However, these objects cannot automatically create and save new patches, and they operate at run-time only, requiring live input to trigger patch construction. There is no solution for automated creation of multiple patches at \textitcompile-time, such that the constructed patches do not contain their own constructors. To this end, we present MaxPy, an open-source Python package for programmatic construction and manipulation of MaxMSP patches. MaxPy replaces the manual actions of placing objects, connecting patchcords, and saving patch files with text-based Python functions, thus enabling dynamic, procedural, high-volume patch generation at compile-time. MaxPy also includes the ability to import existing patches, allowing users to move freely between text-based Python programming and visual programming with the Max GUI. MaxPy enables composers, programmers, and creators to explore expanded possibilities for complex, dynamic, and algorithmic patch construction through text-based Python programming of MaxMSP.more » « less
-
Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Few studies have examined the impact of heat stress on reproduction in Antarctic terrestrial arthropods, specifically how brief, extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the impact on fertility declines with time when the mites are allowed to recover under less stressful conditions, suggesting that the negative effects are transient. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial effects on local populations of Antarctic arthropods.more » « less
-
Clinical translation of stem cell therapies for heart disease requires electrical integration of transplanted cardiomyocytes. Generation of electrically matured human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) is critical for electrical integration. Here, we found that hiPSC-derived endothelial cells (hiPSC-ECs) promoted the expression of selected maturation markers in hiPSC-CMs. Using tissue-embedded stretchable mesh nanoelectronics, we achieved a long-term stable map of human three-dimensional (3D) cardiac microtissue electrical activity. The results revealed that hiPSC-ECs accelerated the electrical maturation of hiPSC-CMs in 3D cardiac microtissues. Machine learning–based pseudotime trajectory inference of cardiomyocyte electrical signals further revealed the electrical phenotypic transition path during development. Guided by the electrical recording data, single-cell RNA sequencing identified that hiPSC-ECs promoted cardiomyocyte subpopulations with a more mature phenotype, and multiple ligand-receptor interactions were up-regulated between hiPSC-ECs and hiPSC-CMs, revealing a coordinated multifactorial mechanism of hiPSC-CM electrical maturation. Collectively, these findings show that hiPSC-ECs drive hiPSC-CM electrical maturation via multiple intercellular pathways.more » « less
-
Assessing and tracking physiological and cognitive states of multiple individuals interacting in virtual environments is of increasing interest to the virtual reality (VR) community. In this paper, we describe a team-based VR task termed the Apollo Distributed Control Task (ADCT), where individuals, via the single independent degree-of-freedom control and limited environmental views, must work together to guide a virtual spacecraft back to Earth. Novel to the experiment is that 1) we simultaneously collect multiple physiological measures including electroencephalography (EEG), pupillometry, speech signals, and individual's actions, 2) we regulate the the difficulty of the task and the type of communication between the teammates. Focusing on the analysis of pupil dynamics, which have been linked to a number of cognitive and physiological processes such as arousal, cognitive control, and working memory, we find that pupil diameter changes are predictive of multiple task-related dimensions, including the difficulty of the task, the role of the team member, and the type of communication.more » « less
-
ABSTRACT Rapid hardening is a process that quickly improves an animal's performance following exposure to potentially damaging stress. In this study of the Antarctic midge, Belgica antarctica (Diptera, Chironomidae), we examined how rapid hardening in response to dehydration (RDH) or cold (RCH) improves male pre- and post-copulatory function when the insects are subsequently subjected to a damaging cold exposure. Neither RDH nor RCH improved survival in response to lethal cold stress, but male activity and mating success following sublethal cold exposure were enhanced. Egg viability decreased following direct exposure of the mating males to sublethal cold but improved following RCH and RDH. Sublethal cold exposure reduced the expression of four accessory gland proteins, while expression remained high in males exposed to RCH. Though rapid hardening may be cryptic in males, this study shows that it can be revealed by pre- and post-copulatory interactions with females.more » « less
An official website of the United States government

Full Text Available